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FROM THE PEN OF THE GENERAL SECRETARY

There are various Mathematical organisations in India but there
was none such in Bihar.

Teachers and students of Mathematics of Bihar needed an orga-
nisation to bring them together to discuss the achicvements and
problems of the different spheres of Mathematics. It was with this
aim and object that the teachers of different local coileges of Bhagalpur
assembled in the T. N. B. College premises on 1-2-58 under the
presidentship of Dr. B. N. Prasad, D. Sc¢ (Paris), Ph. D. (Liverpool),
M. Sc., F.N. 1 and resolved (o organise a society named “Bihar
Mathematical Society™.

Dr. R. Shukla, Ph D. (London), Head of the Deptt. of Math.,
L.S.College, Muzaffarpur, was elected- President and Prof. Shree Nandan
Prasad of T. N. B. College was elected the General Secretary.

Prof. K. D. Khemka was elected Treasurer of the Society.

Later on Prof. Jai Narain, M. A. (London) Head of the Deptt. of
Mathematics, T. N. B. College was made Vice-President.

The following fentative constitution of the society was framed.,
1. The aims and objects of the Socicty shall be
(a) to start a publication containing
(i) Original rescarch papers; (ii) Articles on Mathematical
topics; and (iii) News of Mathematical interest: and

(b) to organise from time to time lectures from distinguished
mathematicians ; and

(c) to organise mathematical exhibitions,
2, The following type of memberships be introduced :
(a) Ordinary members (Admission fee Rs. 5/- and annual subs-
cription Rs. 6/-)
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(b) Ordinary members for 5 yrs (Subscriptio
(c) Ordinary members for 10 yrs. (Subscription .

(d) Donor members (minimum contribution Rs. 30
(¢) Life members (minimum subscription Rs. 1017-)
(f) Sessional members (Subscription Ks. 12/- p~r session)

(2) Founder members (Minimum contribution Rs. 10/- over and
above any type of above memberships)
(h Student members (Minimum contribution Rs. 2/-) per year

A member of the Society shall have the rights and privileges
(a) To contribute papers for reading at the Annual Session of
the Society ;
(b) To receive free of charge any publication of the Societry for
the Session ;
Provided that the student member will be given copy
or copies of the published journals at concession rates .

(c) To seek election to any vacant office of the executive for the
session [Except the donor members vide 2 (d].

Teachers of Mathematics of all the colleges of Bihar were approa-
ched for becoming members. Some of them were enrolled but most of
them were not enrolled. Some student members were also enrolled.
In publishing this first issue of the Journal of the society we have
received co-operation from all corners. Eminent mathematicians from
outside and inside India have encouraged us by sending their valuable
papers for publication in this issue of the Journal.

The proofs of the papers were read and corrected by the authors
concerned and no paper has been examined by any Editorial Board
this time.

We are highly obliged to the authorities of the Bhagalpur
University for granting a suitable amount for the publication of this
journal.

We would request the principals of all colleges of Bihar to pur-
chase each a copy of the Journal for their college library. This will en-
courage us and at the sam« time the society would get monetary assistance
for its proper functioning.

Papers and other contributions for the second issuc of the journal)
may be sent to the general secretary. :

Any suggestion for improvement of the journal will be
appreciated. _




TWO THEOREMS ON THE ORDER OF INTEGRALS

By B. N. PRASAD
Professor and Head, Mathematics Department, University of Allahabad
. The theorems, which we want to prove, are the following :(—
Theorem 1. If f(x) be integrable (L) in every finite interval, then

as x==,

X

F{x) = ] f(r) d{ = 0 {:q,aj,

A
“’hf‘r(" :'1:,“{." prr,r“hr‘; ”I(' fl”l'{’_l_‘r{”

(@ di
a1

exists as a finite number.
Theorem 2. If f (x) be integrable (L) in (0, x), then as x>0,

x
F (x):'f fdi=o (J4:6)l :
0 L

where & >0, provided

X
1)
im J F
>0 ¢ !

exists as a finite number.

These theorems do not seem to have been given previously in the
general form as given here, though no doubt special cases® of them
have been proved and used by various writers. The particular case
of the Theorem 2 when &1, was given by Thomae}, on which a
paper was publuhcd also by G. Prasad} in which he considered in

*The only casc uf Tlu.on.m | that | have seen is that, as x>,

fx | £ (1) | dt =0 (x), provided the integral f L(_! l

exists. See Hobson (1), 723.

Thomae (3)
G. Prasad (2?.

o 3
(o Ty mad g
o= Sl
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great details a class of function f (x) for which F (x) may be of the
type o (x), even when

x
Jim r f (Z_}df
£>0 £ !

does not necessarily exist,

The case of the Theorem 2 when =1, may be looked upon siill
from another angle of view, namely, the fundamenral theorem of ihe
Integral Calculus. It gives a sujficient condition for the differenti-

ability of the Integral of a function at a point of discontinuity of the
second kind, on which topic there seems to be still scope for further

work.
2. Proof of Theorem I. Let

X
X (%)= f / By,
A 18
We have

X X
~—%— ff(r) dr=_l f ;6_]31 di
x% A4 di 18

x
=X (x)- ! f 501 X (1) ar,
x4

by integrati
Y Integration by pagts. Now corresponding to gap arbitrarily

Small positive py
mber ¢, 3 g '
all valueg of x 2 4, we ;.'an p";:bef o e e S Al for

X () =X (4) 47,

where : .
7 may be given 4 Suitable value sych that |7 | ¢, Now

Ifx
7 F() d=x (x)___él_j b=
Here
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TWO THEOREMS ON THE ORDER OF INTEGRALS 3
Again, applying the first mean value theorem, we get

1 I X
5 " St X()di=X(A4" +glx~4'}). LA é:'s—ldtz(}x{,_fiélu
J A *° ’ g

=(X(4) 4 —— (" a)
X

no4'0
3 B, -2

Hence, we have
. - )
lim lim X(4)4" Al )
Yodi 5 [‘ fle) dt= x+m[%><fx) X4} + x—- -
=0.

This proves the theorem.

3. Proof of Theorem 2. Let

X
¢ (%)= rng—)dt

Then we have
8
8 f @ it

LT iy = -
xa f&- : % Je 1
QR =
= - & ¢nat
$i X0 fs

by integration by parts. Now using the ﬁmt

we have

1% ol Sare et
_;é_fs [ar=9() =9 ~5=
= p(x) -9 + @) :

where £e<é<x. Now since
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ber 7, a number x, can be found, such that fo; Valugg of
numbée ) :
x<x1| .
lim ¢(x) | 7
>0 < 3
Thus
%
1 X lim |
— nd: = s f@ de
13‘10 A e>0 xS \JE
lim o [ €
= e50[ 90 -8(+619) (£) j
<7.
Therefore

lim 1 *
— f@)de=0.
x>0 .8 fo

and the theorem is proved,
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A PARTIAL ORDERING IN EUCLIDEAN
SPACES E"(1> 1)

By R. SHUKLA

. . o
Prof. of Mathematics, Bihar University, Muzaffarpur

1. Iniroduction :

To the best of our knowledge in the existing mathematical

literature no ordering relation in E" has been attempted or even of
some have been suggested, they have not been turned to any good
advantage. In this note we shall define a partial ordering < in E*
[where E” is the Euclidean space of n dimensions consisting of all
ordered n —tuples (¥, Xg.0 e oo = X,) of real numbers]. The resultant
simplicity in the proofs of the basic theorems of Analysis is worthy
of notice. For a more detailed study of E" (n>1) from the point
of view of this ordering relation reference may be made to our
forthcoming work entitled “Lectures on Ana lysis.”

2. Partial ordering relation <.

Definitions : (1) Two points 4= (ay, @gss - an) and b=1(b,» bas
— ..bn) will be said to have the relation a<b if and only if a,.<b,

for each i ;
(2) a< b if and only if a < b, for each i ; and

(3) a= b if now only if a: - b, for each i ' :
It is easy to see that < constitutes 2 c?mplete orde.rmg :;f -E :
the linear continuum ; but for E:1 (r£2> 13) L is onLy la)pz::;alngtr r::;?eg&
esadtl) PR R T
5: l‘é?‘ﬂ?f;:nag; 2\;;thhy o)f notice that in E’ L 18 equivale‘t;t tf
<L or = ; while it is not SO in B* (n>1). F(?r example, 1 ‘-I—_b
, ...n)y and b=(1,3,5 e a+1), neither a<b nor 4=

i Byene
l(:alu’t2 all the same agb. Tf a<b and a#*b, we shall say that

b exceeds a. .
We now turn (0 the concept of supremum (i, e the leas;
. Z lnd) and infimum (i.e. the greatest lower bound) for ‘sie:; c;:r
N ' i e
”P?e:' (')n E* (n>, 1) Familiarity with these concepts an
points 1 >

properties in B' will be assumed.
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Let S be any set of points in a fixed Euclidean spacel E" (?;)25{
Now if there exists a point < of E” such that cvc_ry point © \d
then S is said to be bounded above and any such « is an upper bou:j:
of S similar definition for S being bounded below etc. may b(.a, r{?n.},e-d.
Quite naturally when S is both bounded above and be](?w it is -Sdl
to be bounded. Now if for u given set S there exists a point <

such that.

(i) <« is an upper bound of § i.e. every point of S« ; and

(i) no other point B exists such that g<« apd every point of
S<B, then we say that a supremum of S (sup S) exists and « =sup S.

Remark : In E' the above property (ii) reduces to (iii) no point
8 exists such that 8<« and every point of S<B, which is clearly
equivalent to

(iv) If B<«, there exists a point y of S such that B<y<C«
But in E*(n>1), (ii) and (iv) are not equivalent,

The truth of this remark for E3 can be seen from the following
example :

Consider the set S consisting of the points on the thick line-
segment AB,

Then x=sup § ; and if 5 < A,
(ii) is true but (iv) does not hold clearly sup S is not unique,

We now prove the following analogue of the completeness
theorem of E’

Theorem of completeness : 1q Es (7>,1)if S is a non-void set
bounded above, then a sup S exists.

Proof. The proof for El s supposed to be well-known,
Hence we prove the case for n>1. For this let “y=Sup S, where S,
is the set of real numbers constituting the jth coordinates of points of
S(@E<1,2,.....n). We claim that

A=(t1p4gpen.nx,) is 2 Sup S. That « is an upper hoy
; ; : . nd
13 quite obvious, Next, if possible Suppose that another pgfj
B(<«) also is an upper bound, Thep for at leagt one 1, Bi<«;

from the property of Supremum in E! there will Hece

be a point ¢ jp §

‘e
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such that g, <, < «i and consequently it is not true that ¢ <.

This is a contradiction with our supposition that #1s also an upper
bound. Thus « is a Sup S.

4. We wish to conclude this note with proving the Weierstrass-
Bolzano theorem for E” (n>1). But before we give the proof we
make the following definitions.

If a<Cb, then the set of points x such that a <x<b is said to
constitute an open internal (a, b) in B, Similarly the set of points x
such that a < x < b is a closed interval [a, b] in E".

An open interval (a, b) containing a point « is said to be a
neighbourhood of x  If every neighbourhood of a point « contains
infinity of points of a given set S, then x is said to be a limiting
point of S.

Weierstrass-Bolzano Theorem : In E" (n >, 1) every bounded
infinite set has a limiting point.

Notation :—If S is a set of points in E", S, will denote the set of
numbers constituting the ith co-ordinates of the point in S.

Now Since S is bounded, let a and b be any two points such that
a<x<b for every x in S. Let T be the class of all points ¢ such that
x, < ¢, for almost finite number of the points x of S, T is clearly
non-void, a being in T and it is also bounded above for b is an upper
bound. Hence applying the theorem of completeness for ]?.’1,
let «,=Sup T,. Clearly any neighbourhoc:d. (%, -1, 4140 c?n_tal.qa
infinty of S;. Thus infinite subset W of S'exl-sts such that for mﬁmty
of points of W the first co-ordinates lie in (%; —#, %; +1). I;Iex:

ubiecting W for the second co-ordinates to .the same treatmen a
; Jd'd for T as regards first, and continuing thls.prooe?s we get a
::intla(s(.{” 4, .. %) any peighbourhood of which will contain

infinity of points of S. Thus « is a limiting poiat of S.

\




A NOTE ON THE CLASSICAL DYMAMICTS
INTERACTING SYSTEMS

By S. K. ROY

Department of Physics, University of Western Austal'a, Nediands

Consider a system composed of two paris A and B interacting
with each other. It is assumcd that the Hamiltonian «f the s
can be written as
K=H, + Hy + Hup (1)

where Hy and H,, are the Hamiltonians of the scparate pirtsand
Hagp is the interaction term. H, does not contain any coordinates
of the part B, nor are any coordinates of part A involved in Hp.
Has contains the coordinates of both parts, describine the
interaction.

The object of this note is to show that a unified picture of
motion of the system as described by (1) can be derived in two steps.
The first step is to solve the problem without interaction; ard the
second is to set up a Hamilion-Jacobi type of differential equation in
which the Hamiltonian is the interaction part of the Hamiltonian of
the system. The solution of this differential equation gives us d
generating function of a canonical transformation, the knowledge of
which combined with solution f th " iy
completely solyes (he e S —o _ the system without m(eracugn‘
is generally known [:ho “em. “f's app.roach toithe ;?roble‘m, Wh“_:h
iy dy ”100;13 e Interacno.n Picture of Motion™ is used In

1es and was first introduced by Stijckelberg.

If w i i
b € neglect the interaction term Haw in (1), the problem
écomes very simple, .

We detun il \-Ne have two non-interacting systems A and B.
i , gian of l.hc two parts by L (ga, ga) and Lz (g8
in A and B a;g“ 1’3 the generic symbols for all coordinates involved
il where the dot denotes differentiation with respect to

£se .Lagrangiaas, the Hamiltonians of the two
¢ Written separately as H, and Hg, where

.Hn (qﬂ: Pn)=2‘.pn éu "Ln (Qna én)
with Pn :E-I':_E
0

Systems A and B cap

- 9 H=A, B.
qn (2)
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The [amilton equations of motion for the two systems are

Po = [Huy #a] @ = [H, ga] n=A, B. (3)
where we have used Poisson’s bracket notation. These four equations
completely describe the two non-interacting systems.

We introduce now a canonical transformation g, > g ¥, pa>pa’
such that the transformed Hamiltonians H ! do not invelve any g+’
Then the p ,' are all constants of motion. We may, further, choose
the time variation of the generating function G, of the canonical
transformation so as to make the new Hamiltonians vanish. The ¢!
are also then constants of motion, This is achieved by finding
penerating functions G ,, which satisfy the Hamilton-JTacobi equations:

- B

~ a
H p T 2ot 1) - 0.
" { g q J g dg (& {q..: Ja s I) 0 (4)

In the above equations the Gn are functions of ga, p,) =a, (Which
are constants) and . The q,* aro derived from
o - G 5)
: 9,
The time derivatives of g, are then given by go! =3H,(0p /=0,
i. e. gn!are constants =by. The generating functions Ga's are then
given by

GD :Gd (QHS lj;’ﬂ! t} (6)
The equations of transformation
4 GII (Qm q'm f) ‘?
Pn = - 3 E; L] ( )
- G, (qn q'w t)
pPu.= = dq,

give the p, and g, as functions of p,and ¢, which are constants :
Pu= Pn(P'm q,u’ )
q7.=q, (P'»s q'us 1) . _ (8)
There are infinitely many such solutions. The particular solutions
in which the p’, and ¢/, are the initial values of the moments and
_rdinates are of significance.
“ 01;111:;:: gase when the Hamiltonians of th:: systems A and B do
not invelve the time ¢ explicitly, simpler Hamilton-Jacobi equations

3G, , g
may be formed. For Hn (Egr_u" g,) not being dependent explicitly on

time 1, it is possible to chose a function W, (4. 9%) such that
Gn {‘Iu! q:l” IJ “WI (‘?n L] Qu') = En‘ (9)
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10 : - .
The Hamiltoa-Jacob; €quations ).,
are constant. e
where the E,
reduce to BW“

.\, % )“;E"' 10

h tants B, are naturally found to be the energies of 1y,
The cons i

nt systems.
com{:ziﬁcj picture of the CPFI:Ibiﬂ(KI system A and B (withoyy
interaction) can be given by defining :
L=L. +Ljp
H:IL\ + I_IB
G=G. + Gy i1l
W=W, +W;
E=Es +Eg

p.=[H pl,q.=[H,q] n=a,B
G oG -
H(Fé- ) 9) g =0 (12)

aw

-a_é:. 5 qu)zﬂA --Ep =E,

Now let us consider the interaction term also. In this case we

shall represent the coordinates by Q, and Py, The Laprangian L!
is given by—

Lf=LA(QA,<}A)+LB(QB,Q'B)+LAB(QA,QB‘,QA.QB) (13)

e the same functions as before, The Hamiltonian

K< Z '—“--—al.‘l' ' Qn - L1 (14)
n=A,B 4Q,
=*H(Pn, Qn}'{'H[m (15)

Where Hln: k= Z Elf_"“

n=A, B ﬂQT:_'Qn“'L“B 1o
and oLt
Pres
The g -
amiltop €Quatiop, of motjon gre
Paw 2K B

dQns n = iﬁ:' (18)



A NOTE ON THE CLASSICAL DYNAMICS ¢
JENAMICS OF TWO ... 1}
Let us suppose that we 1

. ) . > Know the soluti HEUAT — .
the interaction 18 zero. We 15 of  the system when

. Cpresent  these  solution: "
interaciion by— W SHRIRELS wghout
Pn M [f'n B dn’y 1)
i?rl : qu {IPI, r- ,Dn.,. f}

n-ADB
where p’, ¢’ 's are constants, and
p aGn p P HG:'I G ~ 5
= ooy’ == o— Gy =Gy (40, aa
aqn L a.";‘n 1 n Tn [ <1 -I.‘I ) 11' (20)

N*’Wi; Wclintroduce a C{\i.’ig":i]i\,\ii. transformation from the variable
Q,-P-E»Q , P! such that the new Haimiltonian K' (Q',p!) to which
K is transformed has the same functional dependence on Qq!, Pa!
as H(pa, qn) has on pa, g - In other words, we scek a generating
function GY (Q', Qa ', 1) given by the Hamilton-Jacobi equation—

aG! aG! 3Gl
such that KI (P!, Ql)-H'(P', Q"), (22)
where H!is obtained from the Hamiltonian H (p, g) of the system
without interaction by replacing p, ¢ by PI, Q'.
The Hamilton equations of motion in these variables are—
dK! oH! KI 9Hx
DI T I
Pn - aQn aQn » Ql'l aPu aPn ]
which show that P! and Q,! ’s are given by exactly the same equa-
tions which give p,, Gu Thus the problem of solving (23)1s reduced
to finding a generating fuaction G’ (Qu' Qu's 1) =G (Qu g ?)
from equation (21).
The knowledge of the function G' gives the transformation

(Pa, Qa, 1)> (Pa,t Qu,t 1) = (P P 1) 304 by means of trans-
formation G (gn+ @’ 1) W€ koow that (Pa, qns 1) > (pa' @ D

(23)

and therefore we have—
Pn = Pn (pl'l " qll " ” (24)
Qn = Qn (Pn '! q'n ’ !)

i i ing functions
] jons given by the generat.mg _
g e info oneJ (Q g's 1) which will trans-

G! and G can be combined ! : -
form directly from variables (Pa, Qa,?) to (Po 1, g'n, 8). Tt can
shown that— 25)

J(Qn,qn’| ‘) = Gl (Qn, q:: g') + G(Qn.‘}'nnf)
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If the Hamiltonians H and K are time-independent, the
aenerating functions G, G' and J can bs written as—

G=W (t’]n, {fn ') -E 5

G' =W! (Q119 (1711)'_]—:'][’ (?6)
J = \'VJ (Q“ 3y q’“ ,) e E:l ;,
where all the E's are constants. It can be readily shown that—
(27

WI =WI +W
and BE1=E! + E

It may be noticed that E is the energy of the two parts without
interaction as given by (11), E' the total energy with interaction,
and E! the energy cf interaction.

The solution of the problem of the interacting system is therefore
achieved in two steps. The solution of the problem without iuterac-
tion, which is given by —

= oH - d H

Py = - g dn = Ey
leads to (19). Then the solution of (21) completes the problem.
In fact G is to be found from the equation (21) which is equivalent

to —
IG 3 G! 3 GI
K ( 5 Qll ] Qn ) e I_I ( - ‘_6 q [} q“ ) + ‘_‘—6}—'-‘= Op (28)

This equation together with G (Q, g, 1) =WH(Q, q)-E'¢ reduces
to—

- Wl a Wi
K | —— n —_— - -—
KaQn’Q) H( OG'D’qn)=El (29)
'!‘he equation (29) depends only on the interaction part of the
Hamiltonian K - H.



TWO DIOPHANTINE PROBLEMS

gy
Dr. A MOESSNER (GUNZENHAUSEN, GERMANY)
and
T. N, SINHA ( T. N, I. College, Bhagalpur)
[.  The equation A*"+ B?"=Ci"+D" -~ (1)

For m=1, the general solution of the aforesaid equation is
already known and particularly for those cases also where A=Bor C=D,
or where one of the bases A, B, C, D is equal to 0. Deviating from
the usual methods of solving the given equation for n=1, we pro-
ceed with the relation x . y=u.v . If there is such a relation then we
have also (x +»)? + (u-¥)? = (x —y)* + (U +v)?

Thus the solutions of the given equation (1) for n=1 are given oy

A=x+p,B=u-v,C=x-y, D=u4v where x. y=u. v.

Example : 8.3=6.4 gives (8+3)? + (6-4)*=(8-3)*+(6+4)?
or 112+2%=5%+10%,
For solving the given equation (1) for n=2 we make use of the
same relation and put
x+y=A?, x-y=C% u-y=B?, u+v=D?

Example : x=10585, y=7104, u=21460, v=3504 where
10585. 7104 = 21440, 3504 gives 1334 + 1344 =59 + 158¢. One observes
that if #n >1, the aforesaid equation is rationally impossible for those
cases A =B or C=D or where one of the bases A, B, C, D is equal to 0*

II. The relation
(‘:) Fi, Egseos E, I-—{‘ F, Fgyue .. F, for K=0,1,2....n

2 (EF5"+2_"S¢ Ei

with V= ——2 !
n+2) (s"* ! - 2B,
(@) when n is even
K
By Byyer veliea V-E,, V—-E,.....V—E, = By By Bt Nl
V=Ey;- o ¥ =L for K=0,1,2, .n,n+1, n+2, n+3.

*Fermat’s last theorem : A"+ B"=C* is impossible in integers if
n >2, which, however, has not yet been proved in all its generality.
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(b)) when n is odd

K
EI!EQ’ Seas ’E:! V_F]! V_Fﬂ! """ V"'Fr — F|l.? Fﬂ? S Fr! V'_E
V-Eyooy V=-E for K=0, 1,2, ., n+1, n+2, n+3.
We apply (a) of this theorem to the relation

1

(@) E;, Bt Iz{ Fy%, Fr, for K= 0 where according to (i)
Ve F*+F,”-E, ¥ -E,
Fi'+F,'~E,"~E,*
We then get the system of equations of the form

(iii {Elr+Enr+H+L=Flr+Far+M*P
iii)

Elﬁ?+E22t+H2+L2 ____Fl'dr+F22r+Fsgt+Ma+Pg

B\ +E, " +HS + L3 < F, 3 L F_s: 4 M5 4 ps
Example : We put r=5 and, in order to get whole numbers,
E, <690, E, = 1380, F, =345, F, <1725 so that

}‘6905}: (13805) K (3455, (1725°) for K<=0. Thus we get the
ollowing numerical solution for (iji)

6905 + 13805 +H+ L <3455 1 17255 1 M + P
6191°+1380'°+H2+L==3451°+ 172510 4 M? + P?
S R Ty ST + M3 +P?
M=553?55 018 014 569 375, 1, _ 99 423 515 196 469 375
174 688 791 250, P _ 5 575 030 733 403 750.

where H=1



" FUNCTIONAL NUMBERS AND THEIR
ORDER EXTENSION
By
Dr. R. N, LAL,
Department of Mathematics, T. N. B. College
Starting with ordinal numbers we have constructed two distinct

Systems of ordinal real numbers Ron (wu ) and },. Ron (wﬁ ), where

On (wu) is the class of all ordinal numbers <, while
»

B i
On ( w” )is the class of all ordinal numbers{wa ,  being an indecom-
posable ordinal number and further ordinal sum and ordinal product
are definable in On (w, ) whereas natural sum and natural product

in On ( w? ). But neither Ron (w, ) nor Ron (w? ) is rich enough

as to_ determine the order of greatness or order of smallness of
Logarithmic Exponential functions shortly L functions.

[1] [2] [3]
Thomae, Pincherle and Borel have also attempted to represent the

orders of L functions by their symbols. But little application has

yet been found for their systems of notations.
We thus feel a necessity to construct altogether a new system

of numbers with a view to determine the order of greatness of
Logarithmico Exponential functions.

T, The author’s two papers entitled
' “(a) Ordinal Integers, Rational and Real Numbers.
(b) Generalisation of ordinal Integers, Rational and Real
Numbers.” are under publication.

[1] J. Thomae Elementare Theorie der analytische Functionen
einer complex Veranderlichen (Second Edition Haele

Nebert 1898) 144,

[2] S. Pincherle Alcune _Osservazioni Sugli Ordini des infinite
delle funzioni Memorie della, R. Accademia della Scienzedi
Bologona (4, 5, 1884, 739-750).

[3] E Borel : Lecons Surles Serics a termes Positifs Paris

Gaanthier Villars 1902, 35.
E. Borel : Lecons Surla theorie dela Groissance (Paris

Ganthie Villars 1910) p. 14.
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e we propose first the construction of an o1

Her ) :
numbers and next to find its order exten

system of functional
1. L. Functional Numbers.

With the aid of the following preliminary dfns, theory of 7 3
functional numbers is introduced. Here without apy loss of P(:nci
consider the constructions from a class of L functiong

rality, we will
which are either positive, steadily increasing and tend to infinity or

are null and steadily decreasing to zero, It is to be noted that
functional numbers can also be constructed from a class of ncgative
L functions tending to — co as well as from null functions in an ana-
logous manner. Throughout we shall assume that the variables
wy s Vol v (with suffixes if needed) range over the class of real
numbers (patural).

It is possible to introduce an ordering relation in the domain

of L functions.
ts Dfn L. () f <'g = flg—>0,
) f>rgi=ig <4 f
Theorem 1.
@) f > g <—> fli—>w
For if g—>0, then f/g—><=
(1)) Null (f) <’ Pos (g)
The proof follows from the dfn.
Next_ an equivalence relation =’ is defined in the domain of
L functions.
Dfn. 2. f=lg.=. flg>4.0<d<
that is, f='g if and only if f/g>«
where « is a positive real number.

N.B. (i) A null function =’ a positive function.

— ]

ts An L function is a

e real one valued function defined by a finite
f:m(bmatxon of the functional symbols « ? .P: -, e.‘f (o)
ongth; \;;r? )b’la( 1s a positive real number (natural), operat ing
value of a'x emx anc[1) the number constants, where of course the
value, say Xoe ay be restricted to greater than some definite

If i . 3 -
Ts ;gmt,l:; gom'alﬂ of positive and null L. functions, negallve L

te included, then we may assume that

(i) neg £, <'mull £, <!
’ s <! Posf,
() neg/, <'neg f,<— Boss fi >' Pos f,
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(ii) f[<lg—>Sf+g="g
It is then rcadily seen that ~° is reflexive, symmetric

and transitive.

Dfn. 3. A class of functions [/] defin

. ed by the relation = is said to
be a functional number,

Functional numbers are positive (Pos), negative (neg), null,
finite (fint), transfinite (trf) and iofinitesimal (Inf) as
defined below.

Without any loss of generality let us assume that the variable x>c
unless otherwise stated.

Dfn. 4. (i) Pos [f].=. f—>
(i) Neg [f] .=. f—>0
(i) Null [f] .=. C(fy

that is, [/] is said to be a positive or a negative ora null functional
number acc. as f>« or f>0 or f is a constant function
N. B :— A null functional number is the class of constant functions
and is denoted by [c]
Dfn.5. (i) Rint [f].=.afi-a<lfie [f]-A=x"1
i. e, [ f] is said to be a finite functional number if and
only if there exists a function f, belonging to [ f] such
that f, = x* .
(ii) Inf. [f] .=.a /L 118 [ [] Si=hx o y#0]
that is, [ £ ] is said to be an infinitesimal functional
number if and only if there exists a function f,
belonging to [ f] such that f, =/.x where r£0 (where
I x is r times repeated logarithimic function)
iii) trf. [f] .=- ~ fint [f] .~ Iof. [S], _
™ :Lit[ji's? [_f ] is said to be a tranfﬁnit_e fnnctlonal
pumber if it is neither a finite nor an infinitesimal.

Let us denote the class of finite, trapsfinite and infinitesimal

functional numbers by &z
An ordering relation as wel
of &, 1
Dfn.6. (i) [f1<I[el-=- f <<8[f]
(ii) F_gff! > [g] .= [dg]d
Theorem 2. is simply orderec.
For if f and g are two numbers then either [£1=lgl. or [f] > [g]

or [ /1< [e]

1 as addition is introduced in the domain
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Theorem 3. % s dense, that js between any two functional
numbers there always lies a third element between them. o

Proof : Let [f] and [¢] are the two numbers and for definitan- -
us assume that [ ] < [g]. i -

Clearly there exists a [Vfg] such that [f]<[y/fg 1<lel, for it
can easily be proved that f <? |/ fg <! g as follows ;—

IV =1 fe)= ( fla)3—0

1 :
Also v/ fale=(fefe?) = (£l —s0  asfeiy
Dfn7. [fl+[g].=. [f2]
Properties of - o
P 1. + is commutative for in the definition fp=gf
P 2. + is associative for f. (gh)=( fg). h
P 3, + admits [c] as additive identity element, for
[f]+[el=] £, cl=[f]
P4, 1+ admits iniverse elements, i.e.,
[7]1-[ 1/1] [[F1+[ 1/f]=1 1/f]+[f]=[01]
It is to be noted that 4 has all the usual properties of g4 group.
Theorem 3, (i) [fl=lel=[fg]
(-[f1=[1/1] by P. 4
Generally the product of two functional numbers does not exist.

However both sided product of a real number and a functional number
is definable.

Dfa8. ()L [r]=[ /% |

@ /] «=[rO)
Do [[/1]20f] = fose
=[1/f].2. f=s0,

The system of real numbers (natural) can be

by a correspondence which is one to one,
TéSpect to < and +.

The following correspondence defines sdm on isomorphism,
-(-é--a-[xa‘]

Finally we ghan 8iVe an interpretation of L

functiona) Mumbers. [ £ jg interpreted as the
order of 8Teatness of f, i, e.,

If]u-O(f).

mapped on a part of .~
similar and isomorphic with

An Interpretation
of L, functiona]
Rumbersg,
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It is to be noted that VIST, g -

=4 0 1 the

times said to be the order
according as [ /] is positive oy negat

pative,

It has already been stated that fint [y

nu.rnber by a correspondence
phicw.art. < & 4,

19

absolute valye of [ FY5su0m
3 - e'-

'
sfeatness or order of smallnegs of f

I is associated with a real

Which ig imi
1§ one to one, similar and isomor-

Thus it is possible to represent O (x“ b
tef [ /] as well as in f[f] can not pe repreient};d
neither in the domain of Rop (wy

For if possible
ordinal number

the real number «, But a
by an ordinal real number
. ) nor in Ron (woj.

(? (%) is represented by the smallest transfinite
W since e*>! x" for all the natural numbers n.

Then clearly 1 /n. [¢7] [ e_"_]
n

1
s L[ %=
and [e’]. ﬂ——-[ e ﬂ] and may respectively be represented
1
by —. w and w.
n
. ; 1
But in the domain of Ron (ij, e WEW and thus e% =t er,

which is absurd.

While w.-lﬁis not at all definable.

X |
Len =%*n . which is again

1
Also in Ron (wg), oy WESHE Sl

absurd.*

ot
n g

¢ issue of

e "

*Th orc-i-é;'::;_t;l_sifo;:f F will be considered in the nex
e
the Journal.



A NEW APPROACH TO THE THEORY OF
GRAVITATION

By
R. K. JHA, M. Sc.
Department of Math., Institute of Technology, Muzaffarpur.

Long before Newton fomulated the law of Universal gravntatton‘ the
secret of gravitation was known to many philosophers who h?m i 28
things must have their own places. The smoke went up u_;hlch wa';’
its proper position and heavy particles went down because of. its prope
place. It was Galileo who proved experimentally that in vacuum
all things, heavy as well as light, fall to the earth simulta'neously duc- to
the gravity. The well known astronomer Keppler studied the motm‘n
of heavenly bodies thoroughly and formulated the laws known after his
name. These laws were found to be surprisingly accurate. And
celestial mechanics originated by Tycho Brahe and developed . by
Keppler and others was further confirmed by the help of astronomical
telescope designed by Galileo and others+. And in his turn Newton
formulated the law of Universal gravitation. The amount and direction
of the force of attraction between two heavenly bodies is very accurately
given by the law. But its nature was not quite clear. Why should two
bodies attract each other ? The law of universal gravitation as expounded
by Newton tells us nothing. And so it remains unanswered uptill now.
Moreover there are facts which can not be explained by Newton’s law of
attraction. So mow and then scholars working in this branch of Physics
have brought forward theories claiming to explain these difficulties but
so far only Einstein’s law of General Relativity can claim to be nearer
the truth. Still it has not been able to clear all the anomalies of
the nature, encountered by Newton’s law.

It will be the purpose of this article to touch the two theories—
Newton’s and then that of Einstein’s—and come to thejr difficulties,
And lastly to suggest a way out as far as possible. I must confess at the
very outset that I have not got the solution. Only a new approach to
the problem has been suggested.,

Newton’s law of Gravitation says as everybody knows—“Every
particle of matter in the universe attracts every other particle at all
distances in the line joining them with a force which varies directly
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a8 the product of two masses and inversely as the square of the distance
:ct(;vccn thcm‘_’. It is evident that Newton thought that action of one
wf;oig(fn Sa;:;lr:l;: p:?f:ccdcd with infinite velocity; which is obviously
e e i}t t t',wl‘(}n thoulght the mass of a body to be constant
v, ! o s state n‘f motion ; which also is now found to be
Caugc(nft bt.) as previously stated Newton never explained the

_ attraction between bodijes. Finally it must be mentioned
t}Tat Newtc_‘fn’s law is ambiguous and so it is difficult to point out its
d:screp'a'ncm.q adequately. And he was not very satisfied with it. (1).
In aFIdItlon to all these, there were some facts such as the anomalous
motm:ns of Jupiter, Saturn and the Moon which the law could not
taxplam. And so “all the great mathematicians of the continent—Hygens
in Holland, Leibnitz in Germany, Johann Bernoulli in Switzerland,
Cassiml in France—rejected the Newtonian theory altogether.” (2).

) So a stage was reached which has been nicely described in these
lmesl"if‘ the machine (mathematical theory) works successfully correct
predications of events can be made under circumstances properly
controlled. As more and more knowledge is gained in a particular
field of phenomena a stage soon comes when the mathematical machine
fails. A new machine has now to be devised.” (3).

A bold and fundamental step was taken in this direction by
Albert Einstein. In his attempt he was guided by these facts:—

1. Gravitational fields have a basic proper that all bodies move
in them in the same manner, independently of mass or charge; provided
the initial conditions are the same. This is illustrated from the laws
of free fall in the gravity field of the earth. Here all bodies acquire
one and the same acceleration irrespective of their masses if they start
with the same initial velocity. Also it was proved by accurate and
rigorous experiments that the finertial and gravitational masses of
the same particle were equal. Inertial mass may be determined by
measuring the force and acceleration acquired by the particle as result
of this force. Whereas gravitational mass is found out by the formula
deduced from the Newtonian law of gravitation. The physical nature
of these masses is quite different. Iaspite of this their quantitative

significance is always the same.

2. For small velocities N
fore any law for the field of gravitation must change into Newton’s law

ewton’s law is amazingly true. There-

for small velocities.
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3. The principle of covariance, which states that the laws of
physics can be expressed in a form which is independent of the cq.
ordinate system used,

On these supports Einstein built his brilliant theory of General
Relativity, which aleng with the quantum mechanics form the greagest
achievements of the modern civilization,

The theory of General Relativity was supposed to be confirmed
by many important relativists like A. S. Eddintion. The wel]
known three experiments often cited as proving the predictions of the
theory are (a) deflection of light by the gravitational field of a star,
(b) the influence of the gravitational potential on the frequency of
emitted light, (c) slow rotation of elliptic circuits of planets.

The theory also explained the expanding motion of galactic
systems. (4).

Let us examine the hypotheses one by one. Einstein himself
concluded that principle of equivalence holds good only fora very
limited part of universe. That is to say the fields to which non-
intertial reference systems are equivalent are not completely identical
with actual gravitational fields. At infinite distances from the gravita-
ting bodies, the actual gravitational fields go to zero. On the contrary
the fields which are equivalent to non-inertial frames of reference
increase without limit at infinity ; or In any case remain finite in value.
Therefore we conclude that it is impossible by any choice of reference
frame to eliminate an actual field sincs it vanishes at infinity. :

g 8ak

Further Einstein’s equation of gravitation — R, = —:—;—(Tu, -3g.T)
proves to be so complex that they have to be simplified in order to
get definite conclusions. And even then they can be applied for a finite

region of the universe.

Regarding the three experimental verifications of the theory it
has been pointed out by Prof. V. V. Narlikar that in 1947 the amount
of deflection of a ray of light grazing sun’s limb is found to be
2".01 = 0".27 seconds whereas according to the theory it should be
17.75 seconds. The error being much more than allowable experimental
error, there aré men like Freundlich who still believe that a satis-
factory quantitative agreement between theory and experiment on the
subject has not been established, (5).
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The second is the observational tegt

of the anomalouys motion of
the perihelion of Mercury, This

is of course in agreement with
tive explanations of this pheno-
mena is not difficult to cite, (5,

Similarly third proposed test regarding the displacement of the
red spectral lines emitted in astrong gravitational field was explained
before General Relativity was discovered.  Further information
regarding these can be obtajned in the article of E, Wiechert, Phys,
ZSXVII, 1916 Page 44,

As earlier stated Friedman proved that according to Einstein’s

quation the universe must be expanding. And it was confirmed by

astronomical observations. But Sri K. P. Stanyukovich observes
““there is no reason why phenomena observed in the visible part of the

_ universe should be attributed to the whole of the boundless cosmos,

Our galaxy and other known contiguous galaxies evidently lie in that
part of the metagalaxy which is expanding at present. But it does not

* follow that the whole of the universe is expanding ; an episode can not

be taken for the whole of the picture. (7).

'The general theory of relativity tried to generalize the postulates
of the special theory. But Sri V. Fock observes that the generalization
has not been sufficiently correct. The same word relativity has two
different meanings in the two theories. In the special stheory it
means uniformity and in the general theory it Is used for covariance.
And as covariance has nothing to do with uniformity, there is a. Bl‘e&‘_t
confusion. This confusion leads to statements like “rotation is
relative” which is obviously false. (8).*
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* This paper will be continued in the next issue of the Journal.
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